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Abstract-The transient mass diffusion problem with linear irreversible trapping and external sources for a 
two-fegion slab which has one of its outer boundaries eroding at a prescribed rate and subjected to boundary 
condltlon of the third kind at both boundaries is analyzed and a zeroth order solution is presented for the 
concentration distribution in the medium as a function of time and position. To illustrate the application, 

numerical results are presented for the concentration distribution in the medium. 

NOMENCLATURE 

function defined in equation (33); 
atomic concentration ; 
ambient concentration ; 
mass diffusion coefficient ; 
initial distribution of concentration; 
transformed initial distribution ; 
integral transform of F; 
mass transfer coefficient ; 
dimensionless parameter ; 
kernel, equation (23); 
dimensionless parameter ; 
initial thickness of entire medium; 
thickness of region 1; 
= L - vt; 
normalization integral, equation (42); 

external source of implanted atoms; 
time variable ; 
= (L - L,)/v; 
erosion rate ; 
parameter defined after equation (42); 
dependent variable, equation (8); 
integral transform of W; 
space variable ; 
function defined in equation (15); 
integral transform of Z. 

Greek symbols 

a, B> coefficients in the linear transformation, 
equation (8); 

Y, eigenvalue ; 
l- mr dimensionless parameter ; 
6 mr dimensionless parameter ; 
4 trapping rate ; 

: 

dimensionless parameter; 
eigenfunction. 

Subscripts 

1, region index (1 or 2); 

m, summation index ; 
6 summation index. 

INTRODUCTION 

PROBLEMS of heat and mass diffusion in composite 
media with a moving outer boundary is of interest in 
certain branches of engineering. In high temperature 

diffusion studies, for example, where thermal evap- 

oration may lead to erosion of the solid surface, the 
diffusion profiles within the solid are influenced by the 

movement of the boundary surface [l]. In controlled 
thermonuclear reactors, particle bombardment on the 
plasma side of the reactor vessel can cause erosion of 

the wall [2]. 
In diffusion problems of this type one of the 

boundaries is moving at a prescribed rate. In most 

applications, although the rate of surface erosion is 
very small, the diffusion rate as well as the thickness 

involved are also very small. Therefore, the boundary 
motion, though small, influences the diffusion in the 

medium. The exact analysis of problems belonging to 
this type of moving boundary problems has been very 
limited and is restricted to idealized situations [3]. 

Recently, related mass diffusion problems involving a 
moving boundary have been studied [4,5] by using the 

method of analysis developed in ref. [6]. Here, we 
consider such mass diffusion problem for a two layer 
slab with an external source and a moving boundary, 

and develop an approximate analytical solution for the 
determination of the concentration of species as a 
function of time and position in the medium. 

ANALYSIS 

Consider a composite medium consisting of two 

parallel layers of homogeneous slabs in which one of 
the outer boundaries is moving at a prescribed rate as a 
result of surface erosion. The erosion rate and the mass 
diffusion coefficients in both regions are assumed 
constant. The diffusion, in general, may be influenced 
by the distribution of sinks or trapping sites in the 
medium. The trapping sites are assumed inexhaustible 
and uniformly distributed over each region. The 
trapping reaction is assumed to be a first order process 
and irreversible. 

1191 



1192 S. Bwmo LEITE, M. N. ~ZISIK and K. VERGHESE 

Let L be the initial thickness of the entire medium, L, subject to the boundary conditions 

the thickness of region 1 and IJ the erosion rate of the 
outer surface of region 2. Then the equations governing 
the diffusion process in such a medium can be written - I>, 2(x, t) + h,W,(x, t) = 0, at x = 0, t > 0, 

as (10) 

W,(L,, t) = W,(L,r tk t > 4 (11) 

awl aw2 

inO<x<L,,r>O, (1) D1 2X (x9’) rrL,=D2dx(X~f) 3 f>O, 
x=L, 

(121 

D2 $2 (XP 0 - A2C2(x, t) + S2(x, t) = 2 (X, t) W,(x, t) = 0, at x = L,(t) = L - vt, t > 0, (13) 

in c, < x < L2(f) = L - vt, 0 < t < t, and the initial conditions 
L - L, 

= -. (2) 
L’ W,(x, t) = F,(x), for t = 0, i = 1 or 2 (14) 

Clearly, for /1, = A,, = I the problem reduces to that 
of diffusion of a radioactive species with a decay 

where 

constant given by A in a two region slab with a moving 
boundary. 

The boundary conditions for the problem are taken 
Zi(X, t) = Si(X, t) - ;Li[ai(r)x + Pi(t)] - FX 

as 
- dBi(t) 

dt’ 
i = 1 or 2 ? (15) 

- D, 2(x, t) + h,Cl(x, t) = h,C,,, at x = 0, t > 0 

(3) 

F,(x) =X(x) - ai(0)x - j&(O), i = 1 or 2 (16) 

and the coefficients are given by 

I 

(4) 
at the interface &hl(CZI. - c, x) __I___- 
x=L,,t>O %(t) = DID2 + h,(D,L, + D1[L2(t) - L,]) ’ 

(17) 

(5) D,hW,, -C,,) 
“(‘) = DID, + hl{D,L, + Dl[L2(t) - L,]} ’ (I’) 

C,(x, t) = Czp, at x = L2(t) = L - vt. t > 0 (6) 
DA(C,, - Ct ,) 

and the initial conditions as /G(t) = 
D,D, + hi@% + D,&(t) - L1]3 

f Cta, 

(19) 
ci(x, t) =J;(X) for t = 0, i =f 1 or 2. (7) 

In order to make the boundary conditions for this 
problem homogeneous, new dependent variables 
W,(x, t) are defined as 

Ci(X, t) = W,(X, t) + a,(t)x + Pi(t), i = 1 or 2 (8) 

where the coefficients O+(t) and pi(t) are to be so chosen 
as to make the boundary conditions for the trans- 
formed problem homogeneous. The resulting trans- 
formed system becomes 

iPW. 
D,l ax2 (x! t, - &Wl(Xs t) + Zi(Xg t) 

W,(t) = i 
j, i=l L 

Ki,(xp t) Wi(X, t)dX (22) 

where 

+x, t), i = 1 or 2 (9) Ki,(X. t) = $ (23) 

D,h,L,(t) (C, x - C, x 1 
j2(t) = D,D, + hl{D,L, + Dl[L,(t) - L,]) + ““’ 

This problem defmed by equations (9)-(20) is now 
solved using the integral transform technique as 
described below. 

We define the integral transform pair as 

Wi(x* t) = i Ki,(x* t) I@‘,(t)7 i = 1 or 2, (21) 
?I=, 
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where )L,(X, t)and N,(t) (i = 1 or 2 and M = 1,2,3,. . . ) 
are the eigenfunctions and the normalization integral 
respectively associated with the eigenvalue problem 
given by 

Di s tx2 VI - Atljli(xs 7) + +Y(tMi(x* Y) = O9 

i = 1 or 2 (24) 

subject to the boundary conditions 

- D1 c(x, y) + h,$,(x, Y) = 0, at x = 0 (25) 

$165, Y) = J/2(&r Y) (26) 

and 

L(0 = i 
i=l s L, 

Ll(x, f)%(X, t)h (33) 

In practice, only a finite number of such equations 
needs to be considered; the zeroth order solution is 
obtained by neglecting the summation term in equa- 
tion (29) entirely. Now equations (29)-(33) are solved 
for r,,,(t) using the zeroth order analysis, the resulting 
expression for w,,,(t) is inverted using the inversion 
formula (21) and the linear transformation (8) is 
applied. The resulting zeroth order solutions for the 
concentration distributions C,(x, t) and C,(x, t) in the 
regions 1 and 2 are determined as 

C,(x, t) = 5 K,,(x, t) F (O)e p - 
m=l 

{ m x [ [i y,,br)d~‘] + ji Z&3 ev [ - [~l.(f.)dr.]dt} 

WC, cx - C, co) (hx + 0,) 
+ DID, + h,{D,L, + D&(t) - L,]} + ‘lrn’ 

in 0 Ix I L,, t > 0 (34) 

C,(x, t) = f K,,(x, t) F (0)exp 
Ill=1 

{ m [- Ji Y.(t’)dt’]+ id &,,(t’) exp[- ~,Y,,,(~~~)d~~~]df.j 

D,h,(C,, - C,,) [W) - xl 
+ DID, + h,{D,L, + D&(t) - L,]} + czac’ 

in L, I x 5 L1(Qr t > 0 (35) 

D, g (x. y) 
where 

(27) 
x=L, 

= D, 2 (x, y) 
x=L, 

Ll 

1(/2(x. y) = 0, at x = L,(t) = L - vt (28) 
F,(O) = 

s 
K,,(x, O)F,(x)dx 

0 

Transformation of the set of equations (9)-(20) by 

5 

L 

the application of the integral transform given in + K,,(x, 0) Fz(x) dx (36) 

equation (22) yields the following infinite set of and 
L, 

ordinary differential equations for W’,(t): I.1 
Z,(t) = K,,(x. t) Z,(x, t)dx 

dw’,W 
Jo 

7 + YAP) @Ia) + f ~&pm,(t) = Z,(t) 
“=I + K,,(x, t) Z,(x, t)dx (37) 

(29) 

subject to the initial condition 

WJO) = &JO) 

Here, the form of the normalized eigenfunctions 
K,,(x, t), (i = 1 or 2), of the eigenvalue problem defined 
by equations (24)-(28) will depend on the permissible 

(30) 
values for the eigenvalues y,(t). It can be shown for all 
m (see the Appendix for proof) that 

where Y,(t) > min IL 2,) (38) 

‘,(‘) = !1 5 Ki,(xs t)Z,(x, t)dw 
L, 

Fm(o) = ii1 jL, Ki,(x, O)Fi(x)dx 

Equation (38) implies that the eigenfunctions of equa- 

(31) tions (24) for the region of smallest trapping rate will be 
of the form of sines and cosines whereas for the other 
region, the solution may be of the form of hyperbolic 
and/or trigonometric series. Equation (38) is therefore 

(32) a mathematical restriction for the eigenfunctions span- 
ning the space of solutions for the region of smallest 
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trapping rate. Included in this general result and 
assuming i 1 < A,, we have the following possibilities : 

i., r; y,(t) < 12 (39) 

i., < 1, < i.“,(t) (40) 

as well as the very special case of 

y,(t) = & for certain values of m and t. (41) 

Clearly the above situation applies for systems where 
the rate at which the diffusing atoms are trapped to 
either defects or the lattice atoms of region 2 is bigger 
than that of region 1. 

Based on the above possibilities for the spectrum of 
eigenvalues, y,,,(t), the permissible eigenfunctions for 
regions 1 and 2 can be determined. When the eigenfunc- 
tions, tii,,,(x, t), are known, the normalization integral, 
N,(t), for the whole region is determined by 

N,(t) = i 
l-i @,(x, t)dx + s:,(x, t)dr (42) 

“0 

If we define 

W ,m = (;, - ii,)’ 2; W& = (jy, - i,p 

6,, = sin Ilrn -+ rgcos Ilrn 

if, = 2r,, 1 - + 
i 1 2, 

then the permissible eigenfunctions and corresponding 
values of the integrals appearing in equation (42), for 
regions I and 2, are given below. 

Region 1 
The eigenfunction li/,,,,(x, t) is given by 

,,,,,x.I,=sin~)+~~os!~~) (43) 

and the integral term is evaluated as 

Region 2 
For this region, the three cases to be considered 

according to equations (38)-(41) are as follows: 

(a) For 1, < y,,,(t) < A,. The eigenfunction $2,,,(x, I) 
is given by 

ti2m(.x t) = Ln sinh p(“i)] 

+ a,, cash ~m~L1)] (45) 

and the integral term is evaluated as 

I&(X, t)dx =v 

x [M) - &I 1 - [ F] (46) 

where y,(t) are the solutions of the transcendental 
equation 

+6,.sinh[r,.(I -?l]=O. (47) 

(b) For A, < /1, +K y,(t). 

+ s,, cos ~~~~l)] (448) 

where y,,,(t) are the roots of 

sin 5, 
___ (49) 

r, I 

+S,,sinb,.(l-2)]=0. ($0) 

(c) The special cme ofy,(t) = AZ. This may occur 
only for a specific value of r ; for this particular time, the 
eigenfun~tion JIZ,(x, t) takes the form 
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x (x - w + bn (51) 

and the integral term becomes 

r 
--$sinr,, 

The particular time t at which these relations are valid 
is determined from 

D, hm 
L(r) - ~~1 DL cos rim 

r 

2 1 

- $ sin rim 

+ sinr,, + +cosr,, 0. (53) 

For the case when 1, = 1, = I, it follows from the 
proof in the Appendix that for all m, 

r,(r) > J. 

and the solutions are then given by equations (43), (44) 
and (48)-(50) with &, i = 1 or 2, replaced by L. It 
should be mentioned that in the limit as the erosion 
velocity approaches zero (stationary boundary), the 
zeroth order solution given by equations (34)-(37) 
becomes the exact solution for the problem. 

The accuracy of the zeroth order solution is expec- 
ted to decrease with increasing erosion velocity v as 
illustrated for the case of one region problem [4]. In 
that reference, an estimate of the error introduced by 
neglecting the summation in equation (29) is made 
possible by comparing the zeroth order solution with 
the exact solution available for that case. In addition, if 
the problem involves sources strongly dependent on 
position and peaking near the moving boundary, the 
convergence of the series being slower at the boundary, 
the accuracy of the solution near the moving boundary 
may not be good. 

RESULTS AND DISCUSSION 

To illustrate the application of the foregoing ana- 
lysis, we consider a two-region slab subjected to 
homogeneous boundary conditions of first and third 
kind at the moving and stationary boundaries re- 
spectively. The initial concentrations are zero in both 
regions; for times t > 0 the medium is subjected to a 
delta function source distribution in the region 2 given 

by 

S,(x, t) = S,6(x - x0), (S,(x, t) = 0) 

In this case a,(t), pi(t) andf,(x), i = 1 or 2, are all zero 

as a consequence of the choice for the boundary and 
initial conditions. Then the solutions described by 
equations (34)-(37) reduce to 

ci(x, t, = sO f Ki,(Xf t) s t KZm(xO, t’) exp 
m=l 0 

[-[,Y,,,(t”)dt”]dt’,i=lorZ (54) 

where 

I&(x, t) = $q 
N, t 

and tii,,,(x, t), y,(t) and N,,,(t) are as defined previously. 
Tables 1 and 2 show the concentrations C,(x, t), i = 

1 or 2, calculated from the solutions (54) for two 

different values of the diffusion coefficient D, (D, = 
lo-* cm* set- ’ and 10d9 cm2 set- ’ respectively). The 

Table 1. Values of C(x, t) in a two region slab with D, 
= 10-6cm2s-1 and D, = lo-*cm’s_’ 

Region 1 Region 2 
x(cm) C,( x lo-rs cme3) x(cm) C,( x 10-r* cm-? 

0.0 0.1685 1.0 1.131 
0.1 0.2534 1.009 2.031 
0.2 0.3483 1.018 2.951 
0.3 0.4446 1.027 3.878 
0.4 0.5427 1.036 4.820 
0.5 0.6404 1.015 5.780 
0.6 0.7378 1.054 6.764 
0.7 0.8349 1.063 7.765 
0.8 0.9325 1.072 8.858 
0.9 1.031 1.081 9.813 
1.0 1.131 1.0855 11.56 

1.0889 4.402 
1.0900 0.0 

Table 2. Values of C(x, t) in a two region slab with D, 
= 10e6 cm2 s- ’ and D, = lo-’ cm2 s-r 

Region 1 Region 2 
x(cm) C,( x 10-‘8cm-3) x(cm) C,( x 10-r* cme3) 

0.0 0.2797 
0.1 0.4109 
0.2 0.5920 
0.3 0.7694 
0.4 0.8994 
0.5 1.005 
0.6 1.086 
0.7 1.166 
0.8 1.251 
0.9 1.330 
1.0 1.396 

1.0 1.396 
1.009 6.530 
1.018 12.02 
1.027 17.95 
1.036 25.03 
1.045 33.45 
1.054 43.59 
1.063 55.88 
1.072 70.70 
1.081 88.52 
1.0885 97.90 
1.0889 90.71 
1.0900 0.0 
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FIG. 1. Concentration profiles at two different times in a two region slab with a moving boundary. 

other parameters, which are common for both tables, 
are chosen as 

L= l.lcm;L, = l.Ocm;D, = 10-6cm2sec-1; 
A,= 5 x 10-ssec-l; 

I., = 5 x lo-‘set-‘; h, = 5 x lo-‘crnsec-‘; 
v = 5 x 10-9cmsec-1; 

t = 2 x lo6 set; So = 10’4cm-2 set-‘and 

xg = x0(t) = 0.999 L - vt 

The spatial distributions of the concentrations for the 
parameters of Table 1 and for two different times are 
illustrated in Fig. 1. 

In computing the integrals of y,(t) appearing in 
equation (54), we fit the eigenvalues satisfied by the 
transcendental equations (47) and (50) to a polynomial 
of fifth degree in t (with linear coefficients) by linear 
regression. This procedure significantly reduced the 
computation time since the resulting integrals could be 
performed analytically. The other integrals appearing 
in equation (54) that could not be performed analyti- 
cally were performed numerically by the Gaussian 
quadrature scheme using 64 points of quadrature. 

In the example considered here all the eigenvalues, 
y,(t), were bigger than both I, and 1, (case b). 

However by modifying the input parameters (e.g. L = 
2.0 cm) some eigenvalues can be found in the interval 

(~,, A*). In addition, as D, becomes smaller compared 
to D,, the difference between two adjacent eigenvalues 
decreases and more terms in the summation are 
needed for good convergence of the solution. 

For example, to produce the results in Table 1, 80 
terms in the series were sufficient whereas in Table 2, 
160 terms were needed to obtain the same degree of 
convergence. 

The accuracy of the results presented in Tables 1 and 
2 cannot be ascertained since no rigorous solution for 
this problem exists. However, for the case presented in 
Table 2, since D, >> D,, it is possible to approximate 
this problem by a one-region slab consisting of only 
the second region. We have performed calculations for 
this equivalent one-region problem. The results agreed 
with the values presented in Table 2 to within loo/, for all 
interior points in region (2). This gives confidence in 
the method presented in the paper since the accuracy 
of the solutions to one-region problems have been 
validated in ref. [4]. Furthermore, this comparison 
shows that the first 160 eigenvalues for the two region 
problem were calculated with sufficient accuracy, 
without missing any. 
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APPENDIX 

The proofofrelation (38) 
We write equations (24) for regions 1 and 2 

D d’+,, 
l_ - &$,nl + Yn*lm = 0, 

boundary conditions (25)-(28) are applied. 
We obtain 

L’ (Y, - 2,) 
j 

IL:,,, dx + (Y, - &) 
0 

D dZh 
2x - hi&n + Yntizm = 0. 

The first equation is operated on with the operator 

s L’ +I,,, dx since all the quantities in the RHS of the equality are positive. 
0 Then we write 

and the second with the operator 

,.L, 

L’ (Ym - 4) I $:,dx + (Y, - A,) JI:,dx>O 
0 

or 

The results are added, the integral terms involving the 
second derivatives are integrated by parts once and the which is the result given by equation (38). 

DIFFUSION DANS UNE PLAQUE A DEUX COUCHES AVEC UNE FRONTIERE QUI 
S’ERODE 

R&urn&On ltudie le problBme transitoire de diffusion, massique avec un pitgeage irreversible et 1inCaire et 
des sourcesexternes pouruneplaque 1 deux couchesdontchacune dsafaceexteme quisYrode d unevitesse 

don& et qui est soumise B une condition aux limites de troisikme esp8ce. On recherche la solution d’ordre 
z&o pour la concentration dans le milieu en fonction du temps et de la position. Pour illustrer son 
application, des rCsultats numtriques sont prtsentis pour la distribution de concentration dans le milieu. 

DIFFUSION IN EINER ZWEISCHICHTIGEN WAND MIT EINER ERODIERENDEN 
BERANDUNG 

Zusammenfastmng-Das instationlre Stofftransportproblem mit linear irreversiblem ‘trapping’ und 
luDeren Quellen wird fiir eine zweischichtige Wand, deren eine iiuDere Berandung mit einer vorgegebenen 
Geschwindigkeit erodiert und an deren beiden tiuI3eren Bemndungen Randbedingungen dritter Art 
herrschen, untersucht und eine LGsung nullter Ordnung fiir die Konzentrationsverteilung im Medium als 
Funktion von Ort und Zeit angegeben. Urn die Anwendung zu erllutem, werden zahlenma‘Dige Ergebnisse 

der Konzentrationsverteihmg in dem Medium mitgeteilt. 

AM@@Y3MR B ABYXCJIOmHOM CTEPmHE C KOPPOAMPYIOUIEI? I-PAHMUEfi 

Annornuna-C yveToM JWiei%iOrO HeO6paTHMOrO nOrJIOIUeHI(II A BHeUIHAX HCTOYHHKOE aHanw3Hpy- 

eTCR HeCTaUHOHapHal IlW@$JySWR MaCCbI B CT'ep~He,ODHa u3 BHCUIHHX rpaHAU KOTOpOrO KOppOLlPipyeT 

c 3anaHHoii uHTeHcnBHocTbw, a Ha neyx npyrex uMeeT MecTo rpasuwoe ycnoelte Tpe-rbero pona. 

AaHO peUleHHe B HyJIeBOM npu6nemeHua LLNX paCnpeneneHuS KOHUeHTpaLWH B Cpene B JBBHCHMOCTM 

OT BpeMeHB W KOOpL,HHaTbI W I'IpeJlCTaBJIeHbI 'IACJleHHbIe pe3yJIbTarbl. 


