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NOMENCLATURE
B, function defined in equation (33);
C, atomic concentration ;
C,., ambient concentration;
D, mass diffusion coefficient ;
£, initial distribution of concentration;
F, transformed initial distribution;
F, integral transform of F;
hy, mass transfer coefficient;
H, dimensionless parameter;
K, kernel, equation (23);
K,, dimensionless parameter;
L, initial thickness of entire medium;
L,, thickness of region 1;
L,, =L —ut;
N, normalization integral, equation (42);
S, external source of implanted atoms;
t, time variable ;
tys =(L = Ly)/v;
v, erosion rate;
w,,  parameter defined after equation (42);
W, dependent variable, equation (8);
W, integral transform of W
X, space variable;
Z, function defined in equation (15);
Z, integral transform of Z.
Greek symbols
o, B, coefficients in the linear transformation,
equation (8);
7, eigenvalue;
I',.. dimensionless parameter;
é,, dimensionless parameter;
A, trapping rate;
¢,  dimensionless parameter;
v, eigenfunction.
Subscripts
i, region index (1 or 2);
m, summation index ;
n, summation index.
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Abstract—The transient mass diffusion problem with linear irreversible trapping and external sources for a
two-region slab which has one of its outer boundaries eroding at a prescribed rate and subjected to boundary
condition of the third kind at both boundaries is analyzed and a zeroth order solution is presented for the
concentration distribution in the medium as a function of time and position. To illustrate the application,

numerical results are presented for the concentration distribution in the medium.

INTRODUCTION

ProBLEMS of heat and mass diffusion in composite
media with a moving outer boundary is of interest in
certain branches of engineering. In high temperature
diffusion studies, for example, where thermal evap-
oration may lead to erosion of the solid surface, the
diffusion profiles within the solid are influenced by the
movement of the boundary surface [1]. In controlled
thermonuclear reactors, particle bombardment on the
plasma side of the reactor vessel can cause erosion of
the wall [2].

In diffusion problems of this type one of the
boundaries is moving at a prescribed rate. In most
applications, although the rate of surface erosion is
very small, the diffusion rate as well as the thickness
involved are also very small. Therefore, the boundary
motion, though small, influences the diffusion in the
medium. The exact analysis of problems belonging to
this type of moving boundary problems has been very
limited and is restricted to idealized situations [3].
Recently, related mass diffusion problems involving a
moving boundary have been studied [4, 5] by using the
method of analysis developed in ref. [6]. Here, we
consider such mass diffusion problem for a two layer
slab with an external source and a moving boundary,
and develop an approximate analytical solution for the
determination of the concentration of species as a
function of time and position in the medium.

ANALYSIS

Consider a composite medium consisting of two
parallel layers of homogeneous slabs in which one of
the outer boundaries is moving at a prescribed rate asa
result of surface erosion. The erosion rate and the mass
diffusion coefficients in both regions are assumed
constant. The diffusion, in general, may be influenced
by the distribution of sinks or trapping sites in the
medium. The trapping sites are assumed inexhaustible
and uniformly distributed over each region. The
trapping reaction is assumed to be a first order process
and irreversible.
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Let L be the initial thickness of the entire medium, L,
the thickness of region 1 and v the erosion rate of the
outer surface of region 2. Then the equations governing
the diffusion process in such a medium can be written
as

D, aa(’;‘ (x.1) — 4, Cy(x. £) + Sy{x. 1) = %%(x, )
mO<x<L,t>0, (1)
Dzaa 5= (x, 1) = 4,Ca(x. 1) + Sulx, t)-——(x t)
mL <x<Lty=L—-vo,0<t <t
zL——LI. o)

I

Clearly, for 1, = 1, = Athe problem reduces to that
of diffusion of a radiocactive species with a decay
constant given by Ain a two region slab with a moving
boundary.

The boundary conditions for the problem are taken
as

ac
- D, a_;(x‘ )+ hCilx, ) =h,C, ., atx=0,t>0

(3)
Ci(x, t) = Cy(x, t) 4)
at the interface
x=L,t>0
6C aCc
D= (x.10)=D; -x-2— (x 1) )
Cx, ty=Cyatx=Ly(t)=L —vt, t >0 (6)

and the initial conditions as

Cix, ty=ffx)fort =0, i=1o0r2 N

In order to make the boundary conditions for this
problem homogeneous, new dependent variables
Wi(x, t) are defined as

Cix, t) = Wilx, t) + o{thx + Bi(t), i=1or2 (8)

where the coefficients «,() and S(t) are to be so chosen
as to make the boundary conditions for the trans-
formed problem homogeneous. The resulting trans-
formed system becomes

2

‘W,
D 8x2‘ Ge 1) = 4Wilx, 1) + Zi(x, 1)

o,
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subject to the boundary conditions

oW,
- D ox

=0,atx=0,t>0,

(10

WilLy, ) =Wy(L, 1), t>0, (1)
oW J
D, "t x 1) 0, Myl Liso,
a x =Ly ox x=L,
(12)
Wyix, t)=0,atx =L,(t)=L ~vt, t >0, (13)
and the initial conditions
Wix, t)=Fx),fort=0,i=10r2 (14)
where
,(f)
Zix, ) = Six, t) — Ala{e)x + )] — ——
9B or2, (1)
de
Fix)=flx} ~o{0)x — B0), i=10r2 (16)

and the coefficients are given by

DEhI(CZ:(; - Cu)

O(;{f) = DlDz + hl{Dle + Dl[LZ(I) - Ll]} ’ (17)
_ Dlhl(CZx._Cl'x)
() = DD, + hy{D,L, + D,[Ly(t) — L\]}’ )
ﬁ (t)—' D DZ(CZX —‘Clm)
T DD, + hy{D,L, + D,[Ly(t) - 1]}
(19)
D h Lz(t) (C1 o CZx)
A =5 D, + h{D,Ly + D,[Ly(&) — L, ]} *Ca,
(20

This problem defined by equations (9)-(20) is now
solved using the integral transform technique as
described below.

We define the integral transform pair as

Wi(x' I) = i Kim(x' {) Wm(t)a

m=}

i=1or2(21)

2
Wat) = ,ZIJ Kulx, ) Wiix, ndx  (22)
i= L

where

lﬁm(’“ ’ t)

K {x. t}= N (2
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where y,,(x,t)and N,(t)(i = lor2andm = 1,2,3,...)
are the eigenfunctions and the normalization integral
respectively associated with the eigenvalue problem
given by

d?y,
Diﬁ(x, 7) = A, 7) + y(OWilx, v) = 0,

i=1lor2 (24)

subject to the boundary conditions

D, P e )+ ke ) = 0,3 x =0 25)

YLy, y) = ¥a(Ly, 7) (26)
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and

2

B,.(t) = .-; L Kim(X, 1) ag‘" (x, t)ydx

(33)

In practice, only a finite number of such equations
needs to be considered ; the zeroth order solution is
obtained by neglecting the summation term in equa-
tion (29) entirely. Now equations (29)-(33) are solved
for W, (t) using the zeroth order analysis, the resulting
expression for W,(t) is inverted using the inversion
formula (21) and the linear transformation (8) is
applied. The resulting zeroth order solutions for the
concentration distributions C,(x, t)and C,(x, t) in the
regions 1 and 2 are determined as

Cilx. 0)= i Kym(x, t) {Fm(o)exp[— J' Vm(t')dt} + f Z,(t') exp [— j‘vm(t")dt"}dt’}

m=1 V]

0

D,(C,,, — Cy,,) (hyx + D))

DD, + h{D,L; + D,[L,(t) — L]}

m=1 W]

+Cyo in0<x<L,t>0 (34)

Clx. )= ¥ Kyulx. 1) {FM(O)CXPI:— f vm(t')dt':]+ J’ Z,t") CXP[— J\‘ym(t”)dt"jldt,}
o t

Dyhy(Cy = Cy ) [Ly(t) — x]

DD, + h{D,L, + D,[L,(t) — L]}

+Cye, InL <x<Ly(t)t>0 (35

dy, dy,

D, —(x, =D, —=(x, 27
1 dx (x. 7) - 274y (x, ) L, 27
Vax,y)=0,at x =L,(t) =L ~ vt (28)

Transformation of the set of equations (9)-(20) by
the application of the integral transform given in
equation (22) yields the following infinite set of
ordinary differential equations for W ,(t):

du;rtn(t) + () Wo(t) + i W o (D)B,nlt) = Z,(2)
n=1
29)
subject to the initial condition
W,(0) = F,(0) (30)
where
Z,(1) = Zf Kilx, DZx, pdx (1)
L
2
FO= %} K, (x 0)F(x)dx (32)

where

0

Ly
F.(0) = '[ Ky m(x, O)F (x)dx

L
+ L Kym(x, 0) Fy(x)dx (36)
and '

Ly
Z_m(t) = J‘ Klm(x' t) Zl(x' t)d“x

0

LAty
+ f Kom(x, t) Zy(x, t)dx  (37)
Ly
Here, the form of the normalized eigenfunctions
K;n(x, 1), (i = 10r2),0f the eigenvalue problem defined
by equations (24)-(28) will depend on the permissible
values for the eigenvalues y,,(t). It can be shown for all
m (see the Appendix for proof) that
Ym(t) > min {4, 4,} (38)
Equation (38) implies that the eigenfunctions of equa-
tions (24)for the region of smallest trapping rate will be
of the form of sines and cosines whereas for the other
region, the solution may be of the form of hyperbolic
and/or trigonometric series. Equation (38) is therefore
a mathematical restriction for the eigenfunctions span-
ning the space of solutions for the region of smallest
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trapping rate. Included in this general result and
assuming 4, < 4,, we have the following possibilities:

Ay <yall) < 4, (39
Ay <Ay < 4,0 (40)

as well as the very special case of
v.{t) = 4, for certain values of mand ¢t.  (41)

Clearly the above situation applies for systems where
the rate at which the diffusing atoms are trapped to
either defects or the lattice atoms of region 2 is bigger
than that of region 1.

Based on the above possibilities for the spectrum of
eigenvalues, y,(f), the permissible eigenfunctions for
regions 1 and 2 can be determined. When the eigenfunc-
tions, ¥,,,(x, t), are known, the normalization integral,
N,(t), for the whole region is determined by

i LAty
Nty = [ (X, )dx + J Yinix, t)dx (42)
¢ Ly

Y

If we define

- s 12
Wim = (7~ Ay)

5 Wa, = (!}’m i ’121)1‘2

r o= Wiphey - Waoml
im D%"z » 2Zm Dég:
T . K, = (D_‘)ﬂ'ﬁ

D! DZ Waom

/ r
Sim =K, (cos - —f}—'ﬁsin I’Im>

s . r
dom =sin [y, + ~2cos Ty,

H

im = zrlm (1 - El‘)
L

2/
then the permissible eigenfunctions and corresponding
values of the integrals appearing in equation (42), for
regions 1 and 2, are given below.

Region 1
The eigenfunction ¥ ,,.(x, t) is given by

WimX Uim WimX
e ) + 5 cos (—5—:32—> é3)

and the integral term is evaluated as

L L, ((T,,\2
L Yim (x, t)dX=~'2~‘v{<—f‘I—) +1

| DA sin2l,,, 2
+=] -1 =4+ —sin® T
() ] T

Yimlx 1) = sin(
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Region 2
For this region, the three cases to be considered
according to equations (38)-(41) are as follows:

(@) For A, < v,{t) < 4,. The eigenfunction ¥,,,(x, 1)
is given by

wlX, 1) = 8y, sinh W-———-—-«——-Zm(x”‘r“)]
WamlX, 1) 1 S [ \/B:

+ 83, cosh [M] (45)

D,

and the integral term is evaluated as

Lty 2 <2
Vi (x. )dx = O2n = 1)

Ly

% [Lo(t) = L] {1 - Si“é‘ '5’"] (46)

where y,(t) are the solutions of the transcendental
equation

L,
8 hiT P ——
an 5% [ 2»;( Lzﬂ
. L,
+ 8, sinh | Ty (1=~ ) |=0. @47)
L,

(b) For 4, < 4, < v,,(t}.
WZm(x - Ll)]

miXs L =§m i
YomlX, 1) 13“1{: \/E

x L)
+ 8,,, oS [w”_;] 48)
2 \/:—D‘;—

and

Lty 52 52
j Y2 (x, f)dx = (—}-—ﬂ)
Ly

x [Lyft) — L] [lfi‘f“] 49)

m

where y,,(t) are the roots of

O3 COS [I}m (1 - %)]
2
+ 84, Sin [FM <1 - %—)] =0. (50)
2

{c) The special case of y,,(t) = A,. This may occur
only for a specific value of £ ; for this particular time, the
eigenfunction ¥,,(x, t) takes the form
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Dl rlm

Yomlx, ) = ——" (cos |

r,, .
D, L —17 sin F1m>

H

x(x —L)+3,, (1)

and the integral term becomes

[ e o (22 Do 10 < LD
Ly " D, L, 3

1—‘lm : ?
cosl"l,,,———I—{—-sm I'i,). (52)

The particular time ¢ at which these relations are valid
is determined from

D, T r
L mlcosT,, — —=sinT,,
D, L, H

r
+ <sin T+ #cos r1m> =0. (53)

[La(t) - L,

For the case when 1, = 4, = 4, it follows from the
proof in the Appendix that for all m,

Ymlt) > A

and the solutions are then given by equations (43), (44)
and (48)-(50) with 4, i =1 or 2, replaced by 1. It
should be mentioned that in the limit as the erosion
velocity approaches zero (stationary boundary), the
zeroth order solution given by equations (34)—(37)
becomes the exact solution for the problem.

The accuracy of the zeroth order solution is expec-
ted to decrease with increasing erosion velocity v as
illustrated for the case of one region problem [4]. In
that reference, an estimate of the error introduced by
neglecting the summation in equation (29) is made
possible by comparing the zeroth order solution with
the exact solution available for that case. In addition, if
the problem involves sources strongly dependent on
position and peaking near the moving boundary, the
convergence of the series being slower at the boundary,
the accuracy of the solution near the moving boundary
may not be good.

RESULTS AND DISCUSSION

To illustrate the application of the foregoing ana-
lysis, we consider a two-region slab subjected to
homogeneous boundary conditions of first and third
kind at the moving and stationary boundaries re-
spectively. The initial concentrations are zero in both
regions; for times ¢ > 0 the medium is subjected to a
delta function source distribution in the region 2 given
by

Sa(x, 1) = Sod(x — xg), (S1(x, 1) =0)

In this case a(t), Bi(t) and fi(x),i = 1 or 2, are all zero

1195

as a consequence of the choice for the boundary and
initial conditions. Then the solutions described by
equations (34)—(37) reduce to

Cix, 1) =S, Z: Kim(x, 1) £ Kaml(Xo, t') €xp
t
|i- Jt ym(t")dt”}dt’, i=lor2 (54)
where
K (x, t)= M

v Nult)

and y,,,(x, t), y.(t) and N, (¢) are as defined previously.

Tables 1 and 2 show the concentrations Ci(x, t),i =
1 or 2, calculated from the solutions (54) for two
different values of the diffusion coefficient D, (D, =
1078 cm? sec ™! and 107 ° cm? sec " ! respectively). The

Table 1. Values of C(x, t) in a two region slab with D,
=10"%cm?s ! and D, = 10" %cm?s~!

Region 1 Region 2
x(em) C,(x 1078cm™3) x(em) C,(x 107'® cm™3)
0.0 0.1685 1.0 1.131
0.1 0.2534 1.009 2.037
0.2 0.3483 1.018 2951
0.3 0.4446 1.027 3.878
04 0.5427 1.036 4.820
0.5 0.6404 1.045 5.780
0.6 0.7378 1.054 6.764
0.7 0.8349 1.063 7.765
0.8 09325 1.072 8.858
09 1.031 1.081 9.813
1.0 1.131 1.0855 11.56
1.0889 4.402
1.0900 0.0

Table 2. Values of C(x, t) in a two region slab with D,
=10"%cm?*s™'and D, = 107 %cm?s™!

Region 1 Region 2
x(cm) C,(x10"'%*ecm™3) x(cm) C,(x107'¥cm~?)
0.0 0.2797 1.0 1.396
0.1 04109 1.009 6.530
0.2 0.5920 1.018 12.02
03 0.7694 1.027 17.95
04 0.8994 1.036 25.03
0.5 1.005 1.045 3345
0.6 1.086 1.054 43.59
0.7 1.166 1.063 55.88
0.8 1.251 1.072 70.70
0.9 1.330 1.081 88.52
1.0 1.396 1.0885 97.90
1.0889 90.71
1.0900 0.0
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FiG. 1. Concentration profiles at two different times in a two region slab with a moving boundary.

other parameters, which are common for both tables,
are chosen as

L=11cm;L, =10cm;D, = 10" %cm?sec™!;
A, =5x 107 %sec™!;
A, =5x%x10"7sec™; h; =5 x 10" ®cmsec™!;
v="5x10"%cmsec!;

t=2x 10%sec; S, = 10'*cm ™ ?sec " 'and
Xo=Xq(t) = 0999 L — vt

The spatial distributions of the concentrations for the
parameters of Table 1 and for two different times are
illustrated in Fig. 1.

In computing the integrals of y,(t) appearing in
equation (54), we fit the eigenvalues satisfied by the
transcendental equations (47) and (50) to a polynomial
of fifth degree in ¢ (with linear coefficients) by linear
regression. This procedure significantly reduced the
computation time since the resulting integrals could be
performed analytically. The other integrals appearing
in equation (54) that could not be performed analyti-
cally were performed numerically by the Gaussian
guadrature scheme using 64 points of quadrature.

In the example considered here all the eigenvalues,
Ym(t), were bigger than both A, and 4, (case b).
However by modifying the input parameters (e.g. L =
2.0cm) some eigenvalues can be found in the interval
(41, 43). In addition, as D, becomes smaller compared
to Dy, the difference between two adjacent eigenvalues
decreases and more terms in the summation are
needed for good convergence of the solution.

For example, to produce the results in Table 1, 80
terms in the series were sufficient whereas in Table 2,
160 terms were needed to obtain the same degree of
convergence.

The accuracy of the results presented in Tables 1 and
2 cannot be ascertained since no rigorous solution for
this problem exists. However, for the case presented in
Table 2, since D, » D,, it is possible to approximate
this problem by a one-region slab consisting of only
the second region. We have performed calculations for
this equivalent one-region problem. The results agreed
with the values presented in Table 2 to within 102 for all
interior points in region (2). This gives confidence in
the method presented in the paper since the accuracy
of the solutions to one-region problems have been
validated in ref. [4]. Furthermore, this comparison
shows that the first 160 eigenvalues for the two region
problem were calculated with sufficient accuracy,
without missing any.
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APPENDIX

The proof of relation (38)
We write equations (24) for regions 1 and 2

Y

D, dle — A im + V¥ 1m =0,
A2 om

D, o+ vtz =0

The first equation is operated on with the operator

Ly
J l/,lm dx
0

and the second with the operator

Ly
J‘ l//Zrn dx.
L,

The results are added, the integral terms involving the
second derivatives are integrated by parts once and the
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boundary conditions (25)—(28) are applied.
We obtain

Ly
Gm — A1) f Yl dx + (3, — 45)
0

La
x f Vindx = by ¥,
L

x=0

b fdya \ b dy,, \?
D —— |} dx+D —— ) dx>0
+lfox(dx>x ZJ‘L,<dX>x
since all the quantities in the RHS of the equality are positive.
Then we write

L

L, 33
G — A1) f Y2ndx + Om — 42) J Yimdx >0
0

Ly
or
Ymlt) > min {4,, 4,}

which is the result given by equation (38).

DIFFUSION DANS UNE PLAQUE A DEUX COUCHES AVEC UNE FRONTIERE QUI
SERODE

Résumé—On étudie le probléme transitoire de diffusion, massique avec un piégeage irreversible et linéaire et
des sources externes pour une plaque 4 deux couches dont chacune 4 sa face externe qui s'érode a une vitesse
donnée et qui est soumise d une condition aux limites de troisiéme espéce. On recherche la solution d’ordre
zéro pour la concentration dans le milieu en fonction du temps et de la position. Pour illustrer son
application, des résultats numériques sont présentés pour la distribution de concentration dans le milieu.

DIFFUSION IN EINER ZWEISCHICHTIGEN WAND MIT EINER ERODIERENDEN
BERANDUNG

Zusammenfassung—Das instationdre Stofftransportproblem mit linear irreversiblem ‘trapping’ und

duferen Quellen wird fiir eine zweischichtige Wand, deren eine dufiere Berandung mit einer vorgegebenen

Geschwindigkeit erodiert und an deren beiden duBeren Berandungen Randbedingungen dritter Art

herrschen, untersucht und eine Losung nullter Ordnung fiir die Konzentrationsverteilung im Medium als

Funktion von Ort und Zeit angegeben. Um die Anwendung zu erldutern, werden zahlenméBige Ergebnisse
der Konzentrationsverteilung in dem Medium mitgeteilt.

JAUGPY3IUA B JBYXCIIOMHOM CTEPXKHE C KOPPOIWPYIOWEN M'PAHULIEN

Anrnorauus — C yyeTOM JIMHEHHOTO HEOGPATHMOrO MOTJIOILEHAS H BHEIUHHX HCTOYHHKOB aHalH3HDY-

€Tcst HecTallHOHapHas A dy3nsa MacChl B CTEPXKHE, OHA H3 BHEIUHHX I'DAHHI KOTOPOTO KOPPOIMpYET

€ 3a7aHHOH MHTEHCHBHOCTBIO, a HA [ABYX APYIHX HMEET MECTO TPaHMYHOE YCJIOBHE TPEThEro poja.

JaHo peuieHHe B HYJIEBOM NMPUOJIMKEHHH UIS paclpene/ieHHs KOHLEHTPALMH B Cpelie B 3aBUCHUMOCTH
OT BPEMEHH M KOODPAHHATHI H MPeCTaB/IeHbl YHCJIEHHbIC PE3YJbTATHI.



